UK scientists claim further research on shipworms to lead to cleaner fuels, improved antibiotic drugs

The University of Porstmouth's Dr Reuben Shipway examines a new species of shipworm first discovered in the Philippines in 2020. (Photo: Northeastern University/Matthew Modoono)

Scientists at the University of Portsmouth trying to unravel how shipworms “eat” wood have found no known mechanism in the species’ gut.

The finding helps narrow down future research to solve the mystery of how precisely the creature digests wood.

The research team believe the answer could lead to advances in biofuels, new drugs, and potentially fewer ships with damaged hulls.

Shipworms were known and feared by the Egyptians, the Romans, and the explorer Christopher Columbus, whose fourth voyage to the Americas was scuppered after shipworms “ate” the ship’s hull, risking the lives of its crew.

Despite its name, the creature is not a worm, but a clam that can grow as long as 1.5 metres.

Throughout history it has caused billions of pounds of damage to shipping and the fringes between land and sea – dykes, piers, bridges. However, how they cause such havoc is still unknown.

“To get to the sugary cellulose inside wood, shipworms must first remove a compound called lignin,” said Dr Reuben Shipway, a shipworm expert at the University of Portsmouth and one of the authors of the study. “Lignin is like the plastic wrapper that covers your favourite chocolate bar. Imagine trying to eat this chocolate with the wrapper still on. We know that shipworms can eat wood but we don’t know how they remove the lignin wrapper.”

Lead author, PhD student Stefanos Stravoravdis, at the University of Massachusetts, US, studied the DNA of the bacteria in shipworms, looking for the enzymes that digest lignin. The team were astonished when, despite rigorous scanning and testing, they found not a single enzyme that could be held responsible.

“When I was first contacted about this project,” said Stravoravdis, “I read the email and thought, ‘What the heck is a shipworm?’ As I learned of their bacterial symbiosis, I couldn’t help but be curious as to how this strange, important system works.”

Co-author Professor Barry Goodell said that shipworms’ contribution in cycling carbon on the planet is huge as 70 per cent of wood in mangrove forests alone is known to pass through the gut of shipworms.

“However,” added Professor Goodell, “the unique digestive processes of shipworms could also allow us to clean up plastic wastes in the ocean, produce better, cleaner fuels, and their symbiotic bacteria holds promise for the discovery of new drugs in the fight against antibiotic resistance.”

Also, the creatures’ tunnelling ability is believed to be the inspiration for engineer Marc Brunel in working out how to build tunnels under the Thames, and their tunnels in rotting wood make habitats for countless other marine creatures.

Dr Shipway said these animals play a major role in marine habitats and have real ecological benefit.

“Science is only just beginning to appreciate the importance of these animals,” said Dr Shipway, “and key to this is understanding how they digest wood.”

The research only happened because of the pandemic, scuppering a planned in-laboratory research project. Instead, the team had to think of creative ways to examine the “lignin problem” in shipworms, and turned to the genomes of shipworm bacteria that were publicly available online.

“Covid has been really disruptive and presented many challenges to research,” said Dr Shipway. “But in some ways, it has provided us a great opportunity. Working from home allowed us to take a step back, look at the bigger picture, and forced us to think creatively about how we can answer these big questions away from the lab.

“When you think about it, it’s extraordinary how much we still don’t know about shipworms. They’ve been a destructive force for over a millennium, changed the course of human history, and continue to caused billions of pounds of damage around the world every year. So, the fact that we’re not entirely sure how they do this is a massive gap in our knowledge.”


Baird Maritime

The best maritime site on the web. The sea's our scene!